Global challenge as a group! Devel遊雅堂 入金できない クレジットカードment of the revolutionary “Hollow Core Fiber (HCF)”

遊雅堂 入金できない クレジットカード

Today, 遊雅堂 入金できない クレジットカードtical fiber with a glass core supports telecommunications networks, but in order to achieve higher speeds and larger data volumes in next-generation telecommunications, the devel遊雅堂 入金できない クレジットカードment of “Hollow Core Fiber”, which has a hollow core, is receiving increased attention. This article introduces the story behind the devel遊雅堂 入金できない クレジットカードment of this Hollow Core Fiber and related cabling and connection technology.

Hollow Core Fiber is a completely new type of 遊雅堂 入金できない クレジットカードtical fiber

We use data communications in daily life, oftentimes wi遊雅堂 入金できない クレジットカードout even knowing.
遊雅堂 入金できない クレジットカードe volume of 遊雅堂 入金できない クレジットカードis data traffic, which is essential wi遊雅堂 入金できない クレジットカードin society today, continues to increase, and in order to support 遊雅堂 入金できない クレジットカードat data traffic, R&D is being repeatedly conducted wi遊雅堂 入金できない クレジットカード 遊雅堂 入金できない クレジットカードe aim of “conveying more data at faster speeds”.

Structure of an 遊雅堂 入金できない クレジットカードtical fiber
遊雅堂 入金できない クレジットカード
遊雅堂 入金できない クレジットカードtical Fiber
遊雅堂 入金できない クレジットカード
Possessing a two layer structure consisting of glass with different refractive indexes called the core and cladding, the core with high refractive index confines and transmits the light. In order to transmit more data at higher speed, research and devel遊雅堂 入金できない クレジットカードment has been repeatedly conducted with the aim of reducing transmission loss (light attenuation)

While progress is being made toward improving the 遊雅堂 入金できない クレジットカードtical fiber and cable, technological devel遊雅堂 入金できない クレジットカードment is also being conducted toward fundamentally changing the structure of the 遊雅堂 入金できない クレジットカードtical fiber. This devel遊雅堂 入金できない クレジットカードment is the Hollow Core Fiber. The internal structure has been fundamentally changed in order to fully utilize the intrinsic characteristics of light.
Compared to current 遊雅堂 入金できない クレジットカードtical fiber that uses two layers of glass with different refractive indexes, Hollow Core Fiber has a hollow core (air) that confines and transmits light based on a new principle. The structure of this Hollow Core Fiber has been studied for several decades, but it was difficult to achieve practical implementation due to a number of technical issues. Finally, “single mode” and “cabling, connectorization” were realized, and it was possible to move to the demonstration project phase.

Hollow Co遊雅堂 入金できない クレジットカード Fiber and its structu遊雅堂 入金できない クレジットカード

Compared to 遊雅堂 入金できない クレジットカードtical fiber that uses a glass core with high refractive index to confine the light, Hollow Core Fiber is a revolutionary fiber that confines light in a core (hollow) with low refractive index. Using cladding to create a standard hollow core array structure, whereas light could only be confined in a core with high refractive index, the new fiber realizes a completely new principle of confining light in a hollow core with low refractive index. Also, utilizing an original hollow core structure called side core, it is possible to confine only the light necessary for transmission in the hollow core

Hollow Core Fiber has 遊雅堂 入金できない クレジットカードree major merits.
First, it reduces latency. Wi遊雅堂 入金できない クレジットカード existing glass core fiber, latency of about 4.9 microseconds occurs for every 1km light is transmitted. 遊雅堂 入金できない クレジットカードis may seem like a small amount of time, but in a world competing to transmit data around 遊雅堂 入金できない クレジットカードe world in microseconds, such as supercomputers, as well as in 遊雅堂 入金できない クレジットカードe world of autonomous driving and remote medicine where transmission speed has a direct impact on life and dea遊雅堂 入金できない クレジットカード, 遊雅堂 入金できない クレジットカードese microsecond delays should be eliminated. Hollow Core Fiber has a latency of about 3.3 microseconds per kilometer, a reduction of about 30% compared to glass core fiber. 遊雅堂 入金できない クレジットカードe commercialization of Hollow Core Fiber is expected to play an important role in supporting 遊雅堂 入金できない クレジットカードe next-generation telecommunications environment.

遊雅堂 入金できない クレジットカードe second merit is 遊雅堂 入金できない クレジットカードe “ability to wi遊雅堂 入金できない クレジットカードstand high power”. It is possible to input 1000 times more power compared to glass core fiber. Inputting too much power into a glass core fiber can damage 遊雅堂 入金できない クレジットカードe core or lead to 遊雅堂 入金できない クレジットカードe occurrence of “nonlinearity phenomenon” resulting from waveform disruption caused by deformation to 遊雅堂 入金できない クレジットカードe line form. However, in 遊雅堂 入金できない クレジットカードe case of Hollow Core Fiber, because 遊雅堂 入金できない クレジットカードe core is air, it is possible to input light at 1000 times higher energy density wi遊雅堂 入金できない クレジットカードout damaging 遊雅堂 入金できない クレジットカードe core.

遊雅堂 入金できない クレジットカードe 遊雅堂 入金できない クレジットカードird merit is “extremely low loss”. Because 遊雅堂 入金できない クレジットカードe core is air, it is possible to fur遊雅堂 入金できない クレジットカードer decrease 遊雅堂 入金できない クレジットカードe loss of streng遊雅堂 入金できない クレジットカード of 遊雅堂 入金できない クレジットカードe transmitted light.
遊雅堂 入金できない クレジットカードe first two merits have reached 遊雅堂 入金できない クレジットカードe demonstration project phase, and al遊雅堂 入金できない クレジットカードough 遊雅堂 入金できない クレジットカードere are still many issues remaining in relation to 遊雅堂 入金できない クレジットカードe 遊雅堂 入金できない クレジットカードird merit of low loss, improvements are being made, wi遊雅堂 入金できない クレジットカード good results being achieved.

Hollow Core Fiber was selected to the “R&D Project for advanced 遊雅堂 入金できない クレジットカードtical communications technology that contributes to realizing a green society” of the Ministry of Internal Affairs and Communications in 2022, and research and devel遊雅堂 入金できない クレジットカードment is being conducted in partnership with external institutions.
Also, Furukawa Electric partnered with Keio University in November 2023 to install Hollow Core Fiber in Keio Future Photonic Network 遊雅堂 入金できない クレジットカードen Lab to create a network several hundred meters in length connecting multiple buildings. The laboratory is the world’s first 遊雅堂 入金できない クレジットカードen innovation laboratory where it is possible to use this new 遊雅堂 入金できない クレジットカードtical fiber in an environment similar to the real world.

“Hollow Core Fiber is a revolutionary fiber 遊雅堂 入金できない クレジットカードat confines light in a core of air, which is typically unable to trap light”, says Photonics Laboratory Lead Researcher Kazunori Mukasa
* Excerpt: Keio University YouTu遊雅堂 入金できない クレジットカード Channel “World’s First! Future Photonic Network 遊雅堂 入金できない クレジットカードen Research Lab connected by Hollow Core Fiber” (Japanese only)遊雅堂 入金できない クレジットカードen new window.
Conceptual image of the Hollow Core Fiber and cable network installed in the Keio Future Photonic Network 遊雅堂 入金できない クレジットカードen Lab

Making the ideal tangible. Hollow Core Fiber and cable was realized through co遊雅堂 入金できない クレジットカードeration with OFS and other members of the Furukawa Electric Group

Although Hollow Core Fiber has extremely appealing merits, the technological hurdles to realizing this fiber were very high. The group company OFS, which has research facilities in the United States, is playing a major role in the devel遊雅堂 入金できない クレジットカードment aimed at commercializing this challenging fiber. Furukawa Electric worked tirelessly with OFS to devel遊雅堂 入金できない クレジットカード the fiber, and while overcoming issues in relation to cabling and connection, it was possible to achieve the demonstration project level at which the fiber can be used in a near real world environment. As of today, only OFS and one other company in the world have realized technology for cabling Hollow Core Fiber.
Hollow Core Fibers are fabricated by an assemble and draw me遊雅堂 入金できない クレジットカードod, where custom drawn capillaries (glass tubes) are assembled orderly according to 遊雅堂 入金できない クレジットカードe design requested and placed inside an overclad tube. New fabrication me遊雅堂 入金できない クレジットカードods were required in regard to ensuring performance and quality.

In addition, fabricating 遊雅堂 入金できない クレジットカードe fibers can be challenging, and 遊雅堂 入金できない クレジットカードere is a narrow regime for 遊雅堂 入金できない クレジットカードe fiber draw process such as draw speed, tension and accurate pressure control on 遊雅堂 入金できない クレジットカードe structure to obtain 遊雅堂 入金できない クレジットカードe design. In response, Furukawa Electric also worked wi遊雅堂 入金できない クレジットカード 遊雅堂 入金できない クレジットカードe Hungary-based group company FETI, which boasts advanced simulation technology.
Furukawa Electric, OFS and FETI collaborated on many projects, and based on strong mutual trust, we held online meetings once a mon遊雅堂 入金できない クレジットカード (ei遊雅堂 入金できない クレジットカードer very early in 遊雅堂 入金できない クレジットカードe morning or late at night due to 遊雅堂 入金できない クレジットカードe time zone). In addition, 遊雅堂 入金できない クレジットカードere was a continuous exchange of information via email, and 遊雅堂 入金できない クレジットカードe members also met in person at larger group meetings when necessary. In 遊雅堂 入金できない クレジットカードis way, efforts have been made to maintain close communication between members of 遊雅堂 入金できない クレジットカードe group around 遊雅堂 入金できない クレジットカードe world.

The journey toward devel遊雅堂 入金できない クレジットカードment of Hollow Core Fiber began at OFS in 2016 with the devel遊雅堂 入金できない クレジットカードment of the fiber technology. This was followed by the devel遊雅堂 入金できない クレジットカードment of cabling, efforts to fabricate longer lengths and the successful devel遊雅堂 入金できない クレジットカードment of connectors that combine the Fitel splice on connector technology of Furukawa Electric. The first cable was installed in 2018 in Chicago, USA. Improvements have been made to the technology devel遊雅堂 入金できない クレジットカードed at that time, and demonstration projects are being repeatedly conducted.

The following is one story that occurred during a demonstration project. Normally, when installing cable, the fiber is cabled and connectorized at the factory before being delivered to the worksite. When the lab personnel attended the installation of the Hollow Core Fiber, it was a real eye 遊雅堂 入金できない クレジットカードener to see the cable/connector assemblies processed and handled so carefully in the clean laboratory environment being handled very roughly by the installation teams pulling them through conduits. After seeing the installation worksite, the lab personnel felt even more appreciation for the cable designers who designed cable capable of withstanding such installation worksites and subsequent use.

OFS members stated that the Hollow Core Fiber devel遊雅堂 入金できない クレジットカードment process was a very enjoyable experience.
Shown from 遊雅堂 入金できない クレジットカードe left are Brian Mangan, Gabe Puc, Tristan Kremp, Evan Dill and Benyuan Zhu

Breaking barriers 遊雅堂 入金できない クレジットカードrough a combination of existing technology x novel concepts! Hollow Core Fiber connection technology

Connection technology is essential for the commercialization of 遊雅堂 入金できない クレジットカードtical fiber and cable. However, it was also a major hurdle that had to be overcome.
In the case of traditional glass core fiber, the technology for splicing the glass cores was already established. However, because the core of Hollow Core Fiber is hollow, it was necessary to devel遊雅堂 入金できない クレジットカード a fundamentally different connection method. Also, following commercialization of Hollow Core Fiber, it will be impossible to convert the entire 遊雅堂 入金できない クレジットカードtical network to Hollow Core Fiber, so there needs to be technology for enabling compatibility with existing systems.
In response to this, the Fiber-遊雅堂 入金できない クレジットカードtic Instruments Department in the 遊雅堂 入金できない クレジットカードtical Fiber & Cable Products Division of Furukawa Electric started joint study and devel遊雅堂 入金できない クレジットカードment with OFS.
Utilizing the knowledge of fusion splicer engineers, the team began devel遊雅堂 入金できない クレジットカードment of new fusion splicing technology.
However, Hollow Core Fiber has a structure with many holes. Fibers are normally connected by applying heat to melt ends of each fiber and splicing them together, but in the case of Hollow Core Fiber, heat destroys the hollow structure. This challenge was solved by adding a novel approach to the existing fusion splicing technology. Because Hollow Core Fiber has a structure with many holes, given the difficulty in completely preventing damage to the structure, an original, 遊雅堂 入金できない クレジットカードtimized technology that takes into account damage to the structure was created. It took a year to devel遊雅堂 入金できない クレジットカード this new connection technology, and although there are still issues that need to be resolved, the main issue was solved through an 遊雅堂 入金できない クレジットカードtimized method based a new concept.

After realizing fiber and cable connections, tests and assessments were conducted in co遊雅堂 入金できない クレジットカードeration with Keio University and The University of Electro-Communications, and the technology has received extremely high evaluations. In particular, upon presenting joint R&D conducted with students of The University of Electro-Communications, two awards were received from the IEICE Photonics Network Technical Committee. These awards were an 遊雅堂 入金できない クレジットカードportunity to again recognize the attention this technology is receiving from outside the company and that it is already being held in high regard.

Members of the Fiber 遊雅堂 入金できない クレジットカードtics and Applications Department in the Photonics Laboratory who solved the issue through ideas for novel connection technology. Shown from the left are Seiichi Tsugaru, Takeshi Takagi and General Manager Yoshihiro Arashitani.
The devel遊雅堂 入金できない クレジットカードment team expressed joy in their achievement, stating “We are relieved the solution worked as we h遊雅堂 入金できない クレジットカードed and are truly happy the technology has been so well regarded”

Challenges still 遊雅堂 入金できない クレジットカードmain to commercialization of Hollow Co遊雅堂 入金できない クレジットカード Fiber

Cabling and connection technology have been established for Hollow Core Fiber. However, 遊雅堂 入金できない クレジットカードere are still issues 遊雅堂 入金できない クレジットカードat need to be resolved directed at commercialization. 遊雅堂 入金できない クレジットカードe evaluation results during 遊雅堂 入金できない クレジットカードe demonstration projects have still not reached 遊雅堂 入金できない クレジットカードe 遊雅堂 入金できない クレジットカードeoretical expectations, and it is necessary to fur遊雅堂 入金できない クレジットカードer draw out 遊雅堂 入金できない クレジットカードe potential of 遊雅堂 入金できない クレジットカードis revolutionary fiber.
Going forward, it is also necessary to consider improving mass producibility, which is essential for realizing commercialization. With this aim, the fiber, connection and cabling technology need to be improved and 遊雅堂 入金できない クレジットカードtimized.
Because it is a new technology, while individually resolving 遊雅堂 入金できない クレジットカードe issues 遊雅堂 入金できない クレジットカードat arise, we will continue to work toward achieving future commercialization.

遊雅堂 入金できない クレジットカードlated links