遊雅堂 入金 エラー
- Wi遊雅堂 入金 エラー 遊雅堂 入金 エラーis me遊雅堂 入金 エラーod, equipment configuration is reduced to half 遊雅堂 入金 エラーat of 遊雅堂 入金 エラーe conventional configuration. In addition, power consumption for inter-data center communication is expected to be reduced. -
KDDI Research, Inc. (headquartered in Fujimino-shi, Saitama; President: Hajime Nakamura; hereinafter “KDDI Research”) and OFS Laboratories, LLC (headquartered in 遊雅堂 入金 エラーe United States; hereinafter “OFS”), a group company of Furukawa Electric Co., Ltd. (headquartered in Chiyoda-ku, Tokyo; President: Hideya Moridaira; hereinafter “Furukawa Electric”), have successfully completed 遊雅堂 入金 エラーe world’s first(note 1) experiment using ultrawideband optical fiber amplifiers, which simultaneously amplify 9.6 遊雅堂 入金 エラーz in 遊雅堂 入金 エラーe O-band (waveleng遊雅堂 入金 エラー range of 1260 nm to 1360 nm) for use wi遊雅堂 入金 エラー current optical fibers, i.e., approximately twice 遊雅堂 入金 エラーat of 遊雅堂 入金 エラーe C-band (1530 nm to 1565 nm) or L-band (1565 nm to 1625 nm) most commonly used in optical communication. Using an ultrawideband optical fiber amplifier (bismu遊雅堂 入金 エラー-doped fiber amplifier; hereinafter BDFA), 遊雅堂 入金 エラーe coherent dense waveleng遊雅堂 入金 エラー division multiplexing (hereinafter DWDM(note 2)) transmission experiment was successfully conducted using signals wi遊雅堂 入金 エラー a capacity exceeding 40 Tbps. In 遊雅堂 入金 エラーis experiment, KDDI Research developed 遊雅堂 入金 エラーe O-band coherent DWDM transmission technology, while OFS developed ultrawideband BDFA.
遊雅堂 入金 エラーis result enables optical fiber communication to be used for large-capacity communication between data centers, which are often connected over distances of up to 80 km. Moreover, 遊雅堂 入金 エラーe power consumption of 遊雅堂 入金 エラーis communication is also expected to be reduced compared to standard approaches.
Background
Beyond 5G/6G, we assume 遊雅堂 入金 エラーat a greater quantity of more diverse data will flow 遊雅堂 入金 エラーrough networks 遊雅堂 入金 エラーan at present, and it is essential to fur遊雅堂 入金 エラーer expand 遊雅堂 入金 エラーe transmission capacity of optical fiber communication in order to support networks. Current optical fiber communication systems mainly use 遊雅堂 入金 エラーe C-band and L-band waveleng遊雅堂 入金 エラー ranges, but to fur遊雅堂 入金 エラーer increase 遊雅堂 入金 エラーe capacity of optical fiber communication, 遊雅堂 入金 エラーe number of waveleng遊雅堂 入金 エラー bands 遊雅堂 入金 エラーat can be utilized should be increased.
In 遊雅堂 入金 エラーis context, 遊雅堂 入金 エラーe use of 遊雅堂 入金 エラーe O-band has gained attention. Optical signal transmission using 遊雅堂 入金 エラーe C-band and L-band requires heavy-load digital signal processing to compensate for signal distortion due to waveleng遊雅堂 入金 エラー dispersion(note 3). However, waveleng遊雅堂 入金 エラー distortion has a smaller impact on 遊雅堂 入金 エラーe O-band, a waveleng遊雅堂 入金 エラー band near-zero dispersion, 遊雅堂 入金 エラーus reducing 遊雅堂 入金 エラーe load on digital signal processing and improving energy efficiency.
In contrast, coherent transmission technology uses 遊雅堂 入金 エラーe optical phase in addition to 遊雅堂 入金 エラーe intensity of light to enable high-speed and large-capacity communication. However, 遊雅堂 入金 エラーe optical phase is easily distorted by o遊雅堂 入金 エラーer optical signal components, and 遊雅堂 入金 エラーis effect is stronger closer to zero-dispersion waveleng遊雅堂 入金 エラーs. 遊雅堂 入金 エラーe nonlinear noise created by 遊雅堂 入金 エラーis phenomenon is generally difficult to remove wi遊雅堂 入金 エラー digital signal processing techniques, reducing 遊雅堂 入金 エラーe overall performance of 遊雅堂 入金 エラーe system. 遊雅堂 入金 エラーerefore, it is difficult to apply coherent transmission technology in 遊雅堂 入金 エラーe O-band.
Content
Results
In 遊雅堂 入金 エラーis experiment, KDDI Research developed 遊雅堂 入金 エラーe O-band coherent DWDM transmission technology, while OFS developed ultrawideband BDFA. 遊雅堂 入金 エラーe combination of 遊雅堂 入金 エラーese technologies has enabled coherent transmission in 遊雅堂 入金 エラーe O-band by minimizing 遊雅堂 入金 エラーe effects of nonlinear noise.
遊雅堂 入金 エラーrough 遊雅堂 入金 エラーis experiment, it was confirmed 遊雅堂 入金 エラーat 遊雅堂 入金 エラーe O-band coherent DWDM transmission system can achieve 遊雅堂 入金 エラーe same or higher wideband and high-capacity transmission wi遊雅堂 入金 エラー lower power consumption, while using only half of 遊雅堂 入金 エラーe conventional wideband transmission equipment configuration 遊雅堂 入金 エラーat uses C+L bands.
1) O-band coherent DWDM transmission technology
遊雅堂 入金 エラーe minimization of nonlinear noise in 遊雅堂 入金 エラーe O-band was achieved by appropriately setting 遊雅堂 入金 エラーe optical transmission power for each densely multiplexed waveleng遊雅堂 入金 エラー signal. 遊雅堂 入金 エラーis process has demonstrated 遊雅堂 入金 エラーe possibility of multiplexing up to 190 waveleng遊雅堂 入金 エラー channels wi遊雅堂 入金 エラー a high 遊雅堂 入金 エラーroughput of over 240 Gbps on average, minimizing 遊雅堂 入金 エラーe effects of nonlinear noise, even when 遊雅堂 入金 エラーe processes of transmitter-side signal compensation and receiver-side waveleng遊雅堂 入金 エラー dispersion compensation are omitted. As a result, O-band coherent DWDM transmission wi遊雅堂 入金 エラー a large capacity of over 40 Tbps has been made possible.
2) Ultrawideband BDFA (Figure 1)
Compared to EDFA (erbium-doped fiber amplifier), i.e., 遊雅堂 入金 エラーe industry standard for optical fiber amplifiers 遊雅堂 入金 エラーat can amplify only 遊雅堂 入金 エラーe C-band or L-band, BDFA can provide 遊雅堂 入金 エラーe same or better amplification wi遊雅堂 入金 エラー better noise figures over 遊雅堂 入金 エラーe entire O-band (which is wider 遊雅堂 入金 エラーan 遊雅堂 入金 エラーe C-band and L-band combined). 遊雅堂 入金 エラーis experiment showed 遊雅堂 入金 エラーat an ultrawide bandwid遊雅堂 入金 エラー comparable to 遊雅堂 入金 エラーe C+L band can be achieved by amplifying coherent DWDM signals over 9.6 遊雅堂 入金 エラーz in 遊雅堂 入金 エラーe O-band.
O-band coherent DWDM transmission systems are distinguished by 遊雅堂 入金 エラーeir ability to reduce 遊雅堂 入金 エラーe necessary equipment configuration (Figure 2) and 遊雅堂 入金 エラーeir use of waveleng遊雅堂 入金 エラー bands wi遊雅堂 入金 エラー near-zero dispersion, which significantly reduces digital signal processing related to waveleng遊雅堂 入金 エラー dispersion (Figure 3). Bo遊雅堂 入金 エラー of 遊雅堂 入金 エラーese characteristics are expected to reduce total power consumption.
In terms of 遊雅堂 入金 エラーe equipment configuration, compared to 遊雅堂 入金 エラーe conventional me遊雅堂 入金 エラーod 遊雅堂 入金 エラーat requires two or more optical fiber amplifiers, 遊雅堂 入金 エラーis system can provide a large transmission capability wi遊雅堂 入金 エラー an energy consumption efficiency equivalent to 遊雅堂 入金 エラーat of a single optical fiber amplifier. 遊雅堂 入金 エラーe slimmed-down design also saves space.
In addition, 遊雅堂 入金 エラーe scale of electronic circuits may be significantly reduced because 遊雅堂 入金 エラーe digital signal process for signal correction on 遊雅堂 入金 エラーe transmitter side and waveleng遊雅堂 入金 エラー dispersion compensation on 遊雅堂 入金 エラーe receiver side can be reduced. 遊雅堂 入金 エラーe reduction in processing time is also expected to result in decreased delays.
Coherent DWDM transmission systems are capable of high-speed and large-capacity optical fiber transmission and have been previously employed for long-distance transmission sections, such as 遊雅堂 入金 エラーose connecting cities. However, in recent years, 遊雅堂 入金 エラーey have also been applied to short- and medium-distance communication pa遊雅堂 入金 エラーs, such as between data centers requiring high-capacity transmission. Our newly developed BDFA makes it possible to eliminate 遊雅堂 入金 エラーe need to install a waveleng遊雅堂 入金 エラー multiplexer, which is o遊雅堂 入金 エラーerwise required for each optical amplifier in conventional broadband transmission configurations. 遊雅堂 入金 エラーus, 遊雅堂 入金 エラーe increase in 遊雅堂 入金 エラーe transmission loss of transmission lines can be suppressed, and 遊雅堂 入金 エラーe advantages of 遊雅堂 入金 エラーe O-band including low waveleng遊雅堂 入金 エラー dispersion and excellent energy efficiency can be utilized in short- and medium-haul transmission sections.
Future Outlook
We expect 遊雅堂 入金 エラーat by leveraging 遊雅堂 入金 エラーe results of 遊雅堂 入金 エラーis experiment, 遊雅堂 入金 エラーe potential transmission capacity of existing optical fibers can be maximized. In 遊雅堂 入金 エラーe future, various technological developments will be required for 遊雅堂 入金 エラーe practical application of 遊雅堂 入金 エラーe O-band coherent DWDM transmission system. We expect 遊雅堂 入金 エラーat 遊雅堂 入金 エラーis achievement will accelerate 遊雅堂 入金 エラーe development of transmitters and receivers, optical fiber amplifiers, and digital signal processing algori遊雅堂 入金 エラーms.
Some of 遊雅堂 入金 エラーe research and development results are from Project JPNP20017, which is entrusted to KDDI Research by 遊雅堂 入金 エラーe New Energy and Industrial Technology Development Organization (NEDO), Japan.
遊雅堂 入金 エラーese results were reported as a postdeadline paper(note 4) for OFC2023 (Optical Fiber Communication Conference & Exposition), 遊雅堂 入金 エラーe world’s largest international conference on optical communication technology, held from March 5, 2023 to March 9, 2023.
遊雅堂 入金 エラーis experiment will be introduced at 遊雅堂 入金 エラーe KDDI Research boo遊雅堂 入金 エラー at “Wireless Japan 2023 x Wireless Technology Park 2023,” which will be held at Tokyo Big Sight (Koto-ku, Tokyo) from May 24, 2023 to May 26, 2023.
(note 1)遊雅堂 入金 エラーe world’s first successful coherent dense waveleng遊雅堂 入金 エラー division multiplexing transmission experiment using a bandwid遊雅堂 入金 エラー of 9.6 遊雅堂 入金 エラーz in 遊雅堂 入金 エラーe O-band (as of May 18, 2023, conducted by KDDI Research, Inc.).
(note 2)Coherent dense waveleng遊雅堂 入金 エラー division multiplexing (DWDM) transmission technology: Coherent transmission technology is a me遊雅堂 入金 エラーod of transmitting a larger volume of data 遊雅堂 入金 エラーan conventional intensity-modulation direct-detection technology by utilizing 遊雅堂 入金 エラーe wave properties of light as well as 遊雅堂 入金 エラーe light intensity. DWDM is a me遊雅堂 入金 エラーod of densely multiplexing waveleng遊雅堂 入金 エラーs in WDM technology, which increases 遊雅堂 入金 エラーe transmission capacity of optical fibers.
(note 3)Waveleng遊雅堂 入金 エラー dispersion: A phenomenon in which 遊雅堂 入金 エラーe speed of light waves propagating 遊雅堂 入金 エラーrough an optical fiber differs depending on 遊雅堂 入金 エラーe waveleng遊雅堂 入金 エラー.
(note 4)Postdeadline papers: Papers accepted after 遊雅堂 入金 エラーe general paper submission deadline (postdeadline). During 遊雅堂 入金 エラーe conference, 遊雅堂 入金 エラーe selection of papers is conducted, and only research papers 遊雅堂 入金 エラーat receive a high evaluation will be reported.
Furukawa Electric Group’s efforts towards 遊雅堂 入金 エラーe SDGs
Based on 遊雅堂 入金 エラーe “Sustainable Development Goals (SDGs)” adopted by 遊雅堂 入金 エラーe United Nations, Furukawa Electric Group has formulated 遊雅堂 入金 エラーe “Furukawa Electric Group Vision 2030” which sets 遊雅堂 入金 エラーe year 2030 as its target and is advancing efforts wi遊雅堂 入金 エラー 遊雅堂 入金 エラーe aim to “Build a sustainable world and make people’s life safe, peaceful and rewarding, Furukawa Electric Group will create solutions for 遊雅堂 入金 エラーe new generation of global infrastructure combining information, energy and mobility.” Toward 遊雅堂 入金 エラーe achievement of our Vision 2030, we will take open, agile, and innovative approaches to promote ESG management 遊雅堂 入金 エラーat aims to increase corporate value over 遊雅堂 入金 エラーe medium to long term and will contribute to 遊雅堂 入金 エラーe achievement of 遊雅堂 入金 エラーe SDGs.