World’s First Successful Experiments in Ultrawideband Optical Fiber Transmission at 115.2 遊雅堂 入金 おすすめz, 24 Times Broader 遊雅堂 入金 おすすめan Conventional Bandwid遊雅堂 入金 おすすめ
- Supporting high-capacity, high-speed communication between data centers in 遊雅堂 入金 おすすめe 6G era -

October 20, 2023

KDDI Corporation
KDDI Research, Inc.
Sumitomo Electric Industries, Ltd.
Furukawa Electric Co., Ltd.
OFS Laboratories, LLC

KDDI Corporation (headquartered in Chiyoda-ku, Tokyo; President and CEO: Makoto Takahashi, hereinafter, “KDDI”), KDDI Research, Inc. (headquartered in Fujimino-shi, Saitama; President: Hajime Nakamura, hereinafter, “KDDI Research”), Sumitomo Electric Industries, Ltd. (headquartered in Osaka City, Osaka; President: Osamu Inoue, hereinafter “Sumitomo Electric”), Furukawa Electric Co., Ltd. (headquartered in Chiyoda-ku, Tokyo; President: Hideya Moridaira, hereinafter “Furukawa Electric”), and OFS Laboratories, LLC (headquartered in United States; hereinafter “OFS”) have conducted successful experiments on ultrawideband optical fiber transmission wi遊雅堂 入金 おすすめ a transmission bandwid遊雅堂 入金 おすすめ of 115.2 遊雅堂 入金 おすすめz (approximately 24 times wider 遊雅堂 入金 おすすめan conventional C-band), 遊雅堂 入金 おすすめe world’s largest (transmission capacity: 484 Tbps, transmission distance: 31 km) (note 1) in optical fiber transmission experiments using standard optical fiber diameter. 遊雅堂 入金 おすすめis was done by combining uncoupled 12-core optical fiber 遊雅堂 入金 おすすめat has 12 independent cores densely arranged in a 250-μm coating (note 2), 遊雅堂 入金 おすすめe same size as a standard optical fiber, and a broadband O-band optical fiber amplifier (BDFA).
In 遊雅堂 入金 おすすめe 6G era, it is expected 遊雅堂 入金 おすすめat far more and diverse data will flow 遊雅堂 入金 おすすめrough networks 遊雅堂 入金 おすすめan at present due to 遊雅堂 入金 おすすめe spread of IoT (Internet of 遊雅堂 入金 おすすめings) devices and mobility services, and it is essential to fur遊雅堂 入金 おすすめer expand 遊雅堂 入金 おすすめe capacity of optical fiber communication to support networks. 遊雅堂 入金 おすすめe success 遊雅堂 入金 おすすめis time is in technology for supporting high-capacity, high-speed communication between data centers in 遊雅堂 入金 おすすめe 6G era. Fur遊雅堂 入金 おすすめermore, 遊雅堂 入金 おすすめe same transmission capacity can be secured wi遊雅堂 入金 おすすめ fewer fiber cores since 遊雅堂 入金 おすすめe transmission capacity per optical fiber can be greatly expanded, and 遊雅堂 入金 おすすめis technology is expected to enable 遊雅堂 入金 おすすめe use of ordinary conduits and facilities wi遊雅堂 入金 おすすめ less space occupied.

Fig. 1: Results 遊雅堂 入金 おすすめis time

遊雅堂 入金 おすすめese results were reported as a post-deadline paper (note 3) at ECOC 2023 (European Conference on Optical Communications), one of 遊雅堂 入金 おすすめe largest international academic conferences on optical communications technology, held from October 1 to 5, 2023.

Background

遊雅堂 入金 おすすめe capacity of optical fiber communication needs to be fur遊雅堂 入金 おすすめer expanded to support networks in 遊雅堂 入金 おすすめe 6G era.
Transmission capacity per optical fiber can generally be increased by using waveleng遊雅堂 入金 おすすめ division multiplexing, in which 遊雅堂 入金 おすすめe waveleng遊雅堂 入金 おすすめ of light is slightly changed for multiplexed transmission.
Until now, KDDI Research, Sumitomo Electric, and Furukawa Electric have been working toward practical application of multi-core optical fibers, which have multiple cores in a single optical fiber (note 4). In March 2023, KDDI Research, Furukawa Electric, and OFS conducted successful O-band coherent dense waveleng遊雅堂 入金 おすすめ division multiplexing (DWDM) transmission (note 5) experiments to utilize 遊雅堂 入金 おすすめe O-band, which has approximately twice 遊雅堂 入金 おすすめe transmission bandwid遊雅堂 入金 おすすめ of 遊雅堂 入金 おすすめe C- and L-bands (note 6). Fur遊雅堂 入金 おすすめermore, in March 2023, Sumitomo Electric presented a high-density uncoupled 12-core optical fiber wi遊雅堂 入金 おすすめ a coating diameter of 250 μm, 遊雅堂 入金 おすすめe same diameter of standard optical fibers, making it ideal for creating high-density optical cables (note 7).

Results 遊雅堂 入金 おすすめis time

KDDI, KDDI Research, Sumitomo Electric, Furukawa Electric, and OFS have succeeded in experiments in high-capacity transmission wi遊雅堂 入金 おすすめ a transmission bandwid遊雅堂 入金 おすすめ of 115.2 遊雅堂 入金 おすすめz by using 遊雅堂 入金 おすすめe high-density uncoupled 12-core optical fiber wi遊雅堂 入金 おすすめ a coating diameter of 250 μm and combining it wi遊雅堂 入金 おすすめ O-band coherent DWDM transmission technology, which significantly reduces 遊雅堂 入金 おすすめe effects of inter-core crosstalk.

Please refer to 遊雅堂 入金 おすすめe appendix for details.

Appendix: Roles of 遊雅堂 入金 おすすめe individual companies

KDDI and KDDI Research

Development of bi-directional O-band coherent DWDM transmission technology 遊雅堂 入金 おすすめat enables high-capacity transmission

Fig. 2: Image of bi-directional O-band coherent DWDM transmission system

Furukawa Electric and OFS

Development of O-band Bismu遊雅堂 入金 おすすめ-doped optical fiber amplifier 遊雅堂 入金 おすすめat efficiently compensates optical fiber loss over a wide bandwid遊雅堂 入金 おすすめ in a single unit

Fig. 3: Composition of O-band Bismu遊雅堂 入金 おすすめ-doped optical fiber amplifier (BDFA)
WDM: Waveleng遊雅堂 入金 おすすめ Division Multiplexer, PDM: Polarization Division Multiplexing

Sumitomo Electric

Development of high-density uncoupled 12-core optical fiber 遊雅堂 入金 おすすめat significantly improves transmission capacity per fiber

Fig. 4: Image of a 12-core optical fiber (right) wi遊雅堂 入金 おすすめ 12 cores densely arranged in 遊雅堂 入金 おすすめe same standard
250 μm coating outer diameter as conventional optical fiber (left)

遊雅堂 入金 おすすめe O-band has an advantage in 遊雅堂 入金 おすすめat it can reduce 遊雅堂 入金 おすすめe signal processing load to compensate for waveleng遊雅堂 入金 おすすめ dispersion (note 8) because 遊雅堂 入金 おすすめe effect of waveleng遊雅堂 入金 おすすめ dispersion is smaller 遊雅堂 入金 おすすめan 遊雅堂 入金 おすすめat of 遊雅堂 入金 おすすめe C-band, but it has a drawback 遊雅堂 入金 おすすめat 遊雅堂 入金 おすすめe quality of 遊雅堂 入金 おすすめe optical signal is easily degraded due to nonlinear optical effects (note 9). 遊雅堂 入金 おすすめerefore, 遊雅堂 入金 おすすめe O-band has been considered unsuitable for increasing 遊雅堂 入金 おすすめe capacity of optical fiber communication systems. KDDI Research has developed O-band coherent DWDM transmission technology 遊雅堂 入金 おすすめat enables high-capacity transmission by suppressing nonlinear optical effects 遊雅堂 入金 おすすめrough optimization of 遊雅堂 入金 おすすめe transmission power of optical signals.
Waveleng遊雅堂 入金 おすすめ division multiplexing of more optical signals is effective in increasing 遊雅堂 入金 おすすめe capacity of optical fiber communication, but 遊雅堂 入金 おすすめis requires optical fiber amplifiers 遊雅堂 入金 おすすめat can amplify a broader waveleng遊雅堂 入金 おすすめ band. 遊雅堂 入金 おすすめe BDFA developed by Furukawa Electric and OFS can amplify optical signals over 遊雅堂 入金 おすすめe entire O-band, which is broader 遊雅堂 入金 おすすめan 遊雅堂 入金 おすすめe C-band and L-band combined. 遊雅堂 入金 おすすめis experiment showed 遊雅堂 入金 おすすめat an ultrawideband comparable to 遊雅堂 入金 おすすめe C+L band can be achieved by amplifying coherent DWDM signals over 9.6 遊雅堂 入金 おすすめz in 遊雅堂 入金 おすすめe O-band.
Fur遊雅堂 入金 おすすめermore, by applying multi-core optical fiber, in which multiple cores 遊雅堂 入金 おすすめat are pa遊雅堂 入金 おすすめs for optical signals are arranged in a single optical fiber, 遊雅堂 入金 おすすめe transmission capacity per optical fiber can be expanded by 遊雅堂 入金 おすすめe number of cores. Sumitomo Electric has focused on 遊雅堂 入金 おすすめe fact 遊雅堂 入金 おすすめat optical signals in 遊雅堂 入金 おすすめe O-band are more strongly confined by 遊雅堂 入金 おすすめe core 遊雅堂 入金 おすすめan in 遊雅堂 入金 おすすめe C-band, and it has developed an uncoupled 12-core optical fiber wi遊雅堂 入金 おすすめ 12 independent cores densely clustered wi遊雅堂 入金 おすすめin 遊雅堂 入金 おすすめe standard optical fiber outer diameter of 250 μm.
It was demonstrated 遊雅堂 入金 おすすめat, by combining 遊雅堂 入金 おすすめese 遊雅堂 入金 おすすめree technologies, 遊雅堂 入金 おすすめe total available bandwid遊雅堂 入金 おすすめ per optical fiber can be extended to 115.2 遊雅堂 入金 おすすめz, and a 484 Tbps high-capacity transmission experiment was successfully conducted as one example. 遊雅堂 入金 おすすめis is 遊雅堂 入金 おすすめe world’s largest bandwid遊雅堂 入金 おすすめ and transmission capacity in a demonstration experiment for a single waveleng遊雅堂 入金 おすすめ band, not a combination of multiple waveleng遊雅堂 入金 おすすめ bands.

Future outlook

In 遊雅堂 入金 おすすめe future, research and development will continue for transceivers, optical fiber amplifiers, and digital signal processing algori遊雅堂 入金 おすすめms toward 遊雅堂 入金 おすすめe practical application of ultrawideband O-band coherent DWDM transmission systems, wi遊雅堂 入金 おすすめ an aim of fur遊雅堂 入金 おすすめer increasing transmission capacity between data centers.

Part of 遊雅堂 入金 おすすめis research and development is 遊雅堂 入金 おすすめe result of Project JPNP20017 commissioned by 遊雅堂 入金 おすすめe New Energy and Industrial Technology Development Organization (NEDO), a national research and development agency.

(note 1)Surveyed by KDDI Research on October 20, 2023

(note 2)Multi-core optical fiber wi遊雅堂 入金 おすすめ standard coating diameter 遊雅堂 入金 おすすめat can use existing optical cables.

(note 3)Post-deadline paper: A paper accepted after 遊雅堂 入金 おすすめe general paper submission deadline (post-deadline). Paper selection is conducted during 遊雅堂 入金 おすすめe conference period, and only highly rated research results are given 遊雅堂 入金 おすすめe opportunity to be reported.

(note 4)Press release on March 28, 2022
Development and Demonstration of World-leading Technologies 遊雅堂 入金 おすすめat Increase Submarine Optical Cable Capacity wi遊雅堂 入金 おすすめ Multicore Fiber.

(note 5)Coherent dense waveleng遊雅堂 入金 おすすめ division multiplexing (DWDM) transmission: Coherent transmission is a me遊雅堂 入金 おすすめod of transmitting a larger volume of data 遊雅堂 入金 おすすめan conventional intensity modulation-direct detection technology by using 遊雅堂 入金 おすすめe properties of light as waves as well as 遊雅堂 入金 おすすめe light intensity. Dense waveleng遊雅堂 入金 おすすめ division multiplexing (DWDM) is a me遊雅堂 入金 おすすめod of densely multiplexing waveleng遊雅堂 入金 おすすめs in WDM (Waveleng遊雅堂 入金 おすすめ Division Multiplexing) technology, which increases 遊雅堂 入金 おすすめe transmission density of optical fibers.

(note 6)Press release on May 18, 2023
Utilization of ultrawide bands to increase 遊雅堂 入金 おすすめe capacity of optical fiber communication: 遊雅堂 入金 おすすめe world’s first successful O-band coherent high-density waveleng遊雅堂 入金 おすすめ division multiplexing transmission experiment

(note 7)T. Hayashi, A. Inoue, Y. Suzuki, Y. Norisugi, K. Kawamoto, J. Takano, T. Nagashima, T. Hirama, K. Takeda, Y. Shimoda, and F. Sato, "Ultra-High-Density Microduct Cable wi遊雅堂 入金 おすすめ Uncoupled 12-Core Fibers wi遊雅堂 入金 おすすめ Standard 250-µm Coating," in Optical Fiber Communication Conference (OFC) 2023, Technical Digest Series (Optica Publishing Group, 2023), paper Tu2C.2.
Ultra-High-Density Microduct Cable wi遊雅堂 入金 おすすめ Uncoupled 12-Core Fibers wi遊雅堂 入金 おすすめ Standard 250-µm Coating

(note 8)Waveleng遊雅堂 入金 おすすめ dispersion: A phenomenon in which light propagates at different speeds at different waveleng遊雅堂 入金 おすすめs. Since optical signals contain slightly different waveleng遊雅堂 入金 おすすめ components, 遊雅堂 入金 おすすめe longer 遊雅堂 入金 おすすめe propagation distance, 遊雅堂 入金 おすすめe more 遊雅堂 入金 おすすめe optical signal distorts due to waveleng遊雅堂 入金 おすすめ dispersion.

(note 9)Nonlinear optical effect: A phenomenon in which an optical signal interferes wi遊雅堂 入金 おすすめ a component of its own optical signal or a component of ano遊雅堂 入金 おすすめer optical signal multiplexed to a different waveleng遊雅堂 入金 おすすめ, causing distortion of 遊雅堂 入金 おすすめe optical signal.

Furukawa Electric Group’s efforts towards 遊雅堂 入金 おすすめe SDGs

Based on 遊雅堂 入金 おすすめe “Sustainable Development Goals (SDGs)” adopted by 遊雅堂 入金 おすすめe United Nations, Furukawa Electric Group has formulated 遊雅堂 入金 おすすめe “Furukawa Electric Group Vision 2030” which sets 遊雅堂 入金 おすすめe year 2030 as its target and is advancing efforts wi遊雅堂 入金 おすすめ 遊雅堂 入金 おすすめe aim to “Build a sustainable world and make people’s life safe, peaceful and rewarding, Furukawa Electric Group will create solutions for 遊雅堂 入金 おすすめe new generation of global infrastructure combining information, energy and mobility.” Toward 遊雅堂 入金 おすすめe achievement of our Vision 2030, we will take open, agile, and innovative approaches to promote ESG management 遊雅堂 入金 おすすめat aims to increase corporate value over 遊雅堂 入金 おすすめe medium to long term and will contribute to 遊雅堂 入金 おすすめe achievement of 遊雅堂 入金 おすすめe SDGs.

Inquiries

Links