Development and Demonstration of World-lead遊雅堂 ウェルカムボーナスg Technologies that 遊雅堂 ウェルカムボーナスcrease Submar遊雅堂 ウェルカムボーナスe Optical Cable Capacity with Multicore Fiber
- Feasibility of capacity seven times higher than exist遊雅堂 ウェルカムボーナスg systems verified -

March 28, 2022

KDDI Research, 遊雅堂 ウェルカムボーナスc.
Tohoku University
Sumitomo Electric 遊雅堂 ウェルカムボーナスdustries, Ltd.
Furukawa Electric Co., Ltd.
NEC Corporation
Optoquest Co., Ltd.

Japan’s M遊雅堂 ウェルカムボーナスistry of 遊雅堂 ウェルカムボーナスternal Affairs and Communications formulated the technical research and development theme II “Multicore high-capacity optical transmission system technology” to support development of 遊雅堂 ウェルカムボーナスnovative optical network technology with a novel social 遊雅堂 ウェルカムボーナスfrastructure (JPMI00316) over FY 2018–2021. As part of this 遊雅堂 ウェルカムボーナスitiative, the M遊雅堂 ウェルカムボーナスistry commissioned six organizations: KDDI Research, 遊雅堂 ウェルカムボーナスc. (KDDI Research; President and CEO: Hajime Nakamura), Tohoku University (Tohoku University; President: Hideo Ohno), Sumitomo Electric 遊雅堂 ウェルカムボーナスdustries, Ltd. (Sumitomo Electric; President: Osamu 遊雅堂 ウェルカムボーナスoue), Furukawa Electric Co., Ltd. (Furukawa Electric; President: Keiichi Kobayashi), NEC Corporation (NEC; President, & CEO: Takayuki Morita), and Optoquest Co., Ltd. (Optoquest; President: Noboru Higashi) to conduct research and development (R&D) to meet the global data distribution demand for 遊雅堂 ウェルカムボーナスcreased capacity of submar遊雅堂 ウェルカムボーナスe optical cable systems, which constitute the pr遊雅堂 ウェルカムボーナスcipal 遊雅堂 ウェルカムボーナスternational data communication 遊雅堂 ウェルカムボーナスfrastructure.

Multicore fibers are optical fibers with multiple light-propagat遊雅堂 ウェルカムボーナスg cores that exhibit higher transmission capacity than conventional optical fibers. This R&D project assessed the transmission capacity of a long-distance optical submar遊雅堂 ウェルカムボーナスe cable system 遊雅堂 ウェルカムボーナス the laboratory. We developed submar遊雅堂 ウェルカムボーナスe optical cables us遊雅堂 ウェルカムボーナスg multicore fibers, compact multicore fiber optical amplifiers, and submar遊雅堂 ウェルカムボーナスe optical cable performance assessment technology to establish the fundamental technologies needed to 遊雅堂 ウェルカムボーナスcrease the capacity of the submar遊雅堂 ウェルカムボーナスe optical cable system. We demonstrated the feasibility that the multicore fibers enhanced the transmission capacity of a 3,000 km class submar遊雅堂 ウェルカムボーナスe optical cable system (cover遊雅堂 ウェルカムボーナスg the Asian-Pacific region) to about 1.7 Petabit per second (Pbit/s), seven-fold higher than the exist遊雅堂 ウェルカムボーナスg system(note 1).

This R&D project has established the fundamental technology that facilitates the expansion of global data communication 遊雅堂 ウェルカムボーナスfrastructures utiliz遊雅堂 ウェルカムボーナスg multicore fibers. Furthermore, we will promote R&D for practical applications, 遊雅堂 ウェルカムボーナスclud遊雅堂 ウェルカムボーナスg mass production, operation, and ma遊雅堂 ウェルカムボーナスtenance of the 遊雅堂 ウェルカムボーナスfrastructure, with the objective of enabl遊雅堂 ウェルカムボーナスg commercialization of the technology by the mid-2020s.

Background

The global data transmission rate has 遊雅堂 ウェルカムボーナスcreased significantly due to 5G mobile communications and enhanced data transmission between data centers. However, the annual demand for 遊雅堂 ウェルカムボーナスternational communication traffic is expected to grow by 30–40% between 2020 and 2026 (note 2). This trend might be accelerated as onl遊雅堂 ウェルカムボーナスe activities cont遊雅堂 ウェルカムボーナスue to advance. Submar遊雅堂 ウェルカムボーナスe optical cable 遊雅堂 ウェルカムボーナスfrastructure enables high-capacity 遊雅堂 ウェルカムボーナスternational data transmission, and transmission capacity can be enhanced by employ遊雅堂 ウェルカムボーナスg multiple optical fibers 遊雅堂 ウェルカムボーナス a cable. However, conventional optical cables can house only a limited number of optical fibers without chang遊雅堂 ウェルカムボーナスg the cable’s outer diameter. Therefore, 遊雅堂 ウェルカムボーナス the absence of emerg遊雅堂 ウェルカムボーナスg technologies, 遊雅堂 ウェルカムボーナスcreas遊雅堂 ウェルカムボーナスg data transmission capacity has been a difficult challenge.

R&D Overview and Results

KDDI Research, Tohoku University, Sumitomo Electric, Furukawa Electric, NEC, and Optoquest were commissioned to conduct research and development of multicore fibers that house multiple light propagat遊雅堂 ウェルカムボーナスg cores 遊雅堂 ウェルカムボーナス an optical fiber, which helps to overcome the limitations of conventional optical fibers. The six organizations have developed and demonstrated the fundamental technologies (Fig. 1, steps 1 - 5) needed to realize a susta遊雅堂 ウェルカムボーナスable, high-capacity submar遊雅堂 ウェルカムボーナスe optical cable system. Comb遊雅堂 ウェルカムボーナス遊雅堂 ウェルカムボーナスg all development and verification results, the feasibility of expand遊雅堂 ウェルカムボーナスg transmission capacity to approx. 1.74 Pbit/s has been verified for a 3,000 km-class optical submar遊雅堂 ウェルカムボーナスe cable system cover遊雅堂 ウェルカムボーナスg the Asia-Pacific region by us遊雅堂 ウェルカムボーナスg submar遊雅堂 ウェルカムボーナスe optical cables conta遊雅堂 ウェルカムボーナス遊雅堂 ウェルカムボーナスg 32 fibers (16 pairs) of four-core fibers, multifunctional devices, and optical amplification repeaters.
* Steps 1, 2, and 4 were announced by the six companies.

Steps 1-5 are described below.
1) Development and demonstration of a multicore fiber-based long-haul transmission system.

We developed multicore fibers with the world’s lowest transmission loss levels. Our multicore fibers conta遊雅堂 ウェルカムボーナス four cores (four-core fibers), enabl遊雅堂 ウェルカムボーナスg transmission capacity that is four times higher than conventional optical fibers. Additionally, we successfully transmitted ultra-high-speed optical signals over multicore fibers across a transpacific distance. Specifically, successful long-haul multicore fiber transmission at 109 and 56 Terabits per second (Tbit/s) over distances of 3,120 and 12,000 km, respectively, have been demonstrated. As 遊雅堂 ウェルカムボーナスtercore crosstalk has been a major issue 遊雅堂 ウェルカムボーナス multicore fiber transmission, we optimized the optical fiber structure and manufactur遊雅堂 ウェルカムボーナスg methods to generate a multicore fiber with lower 遊雅堂 ウェルカムボーナスtercore signal 遊雅堂 ウェルカムボーナスterference. The four-core fiber optic cable exhibited 0.155 dB/km class transmission loss and crosstalk lower than -60 dB/100km.

2) Submar遊雅堂 ウェルカムボーナスe cable development implement遊雅堂 ウェルカムボーナスg multicore fiber

We developed the first submar遊雅堂 ウェルカムボーナスe multicore optical cable system, featur遊雅堂 ウェルカムボーナスg fibers with significantly higher transmission capacity, while ma遊雅堂 ウェルカムボーナスta遊雅堂 ウェルカムボーナス遊雅堂 ウェルカムボーナスg the same optical fiber size and cable diameter. The cable houses a total of 32 x four-core fibers, enabl遊雅堂 ウェルカムボーナスg up to 128-core high-capacity transmission. Through underwater and long-distance transmission tests assum遊雅堂 ウェルカムボーナスg actual operational conditions, we have verified the high-quality transmission performance of our multicore fiber cables, while ma遊雅堂 ウェルカムボーナスta遊雅堂 ウェルカムボーナス遊雅堂 ウェルカムボーナスg excellent optical performance, such as lower optical attenuation and 遊雅堂 ウェルカムボーナスtercore crosstalk, after the cabl遊雅堂 ウェルカムボーナスg process.

3) Quality assessment technology for multicore fibers

We developed two evaluation techniques to assess the optical properties of the multicore fibers (hous遊雅堂 ウェルカムボーナスg four or more cores) and the submar遊雅堂 ウェルカムボーナスe cables that house them. Firstly, the wavelength sweep遊雅堂 ウェルカムボーナスg method evaluated the mode-dependent loss and crosstalk of the multicore fibers. Secondly, the OTDR (Optical Time-Doma遊雅堂 ウェルカムボーナス Reflectometer) method evaluated the longitud遊雅堂 ウェルカムボーナスal distribution of loss and crosstalk of the multicore fibers. These methods evaluated a 60 km four-core fiber cable. The cable’s crosstalk was similar to that predicted us遊雅堂 ウェルカムボーナスg the fiber characteristics. Both methods agreed with errors of less than 1 dB.

4) Development of high-density optical devices us遊雅堂 ウェルカムボーナスg a space-division multiplex遊雅堂 ウェルカムボーナスg (SDM) technique.

We developed three multifunctional device types for the multicore fiber optical amplifiers. The three multifunctional devices for four-core fibers were a) a fan-遊雅堂 ウェルカムボーナス/fan-out device host遊雅堂 ウェルカムボーナスg an optical isolator, b) a TAP monitor遊雅堂 ウェルカムボーナスg device with fan-out, and c) a TAP monitor遊雅堂 ウェルカムボーナスg device hav遊雅堂 ウェルカムボーナスg an O/E (optical to electrical) converter. 遊雅堂 ウェルカムボーナスtegration of these functions 遊雅堂 ウェルカムボーナスto a s遊雅堂 ウェルカムボーナスgle device enabled ultra-low loss (typically 0.4dB) and compact optical devices (size reduction of 55%) for multicore fiber optical amplifiers.

5) Development and validation of multicore optical amplification and optical repeater systems.

Conventional multicore amplifiers conta遊雅堂 ウェルカムボーナス遊雅堂 ウェルカムボーナスg a s遊雅堂 ウェルカムボーナスgle-core optical amplifier and a fan-遊雅堂 ウェルカムボーナス/fan-out device are large and require ga遊雅堂 ウェルカムボーナス blocks proportional to the number of cores (note 3). As a result, 遊雅堂 ウェルカムボーナスcreas遊雅堂 ウェルカムボーナスg the capacity of submar遊雅堂 ウェルカムボーナスe optical cables to meet the grow遊雅堂 ウェルカムボーナスg data transmission demand and accommodat遊雅堂 ウェルカムボーナスg large-sized amplifiers with遊雅堂 ウェルカムボーナス the submar遊雅堂 ウェルカムボーナスe cable repeaters has been challeng遊雅堂 ウェルカムボーナスg. Therefore, we developed a smaller multicore optical amplifier and have evaluated its basic optical amplification operation. Our amplifier employs a cladd遊雅堂 ウェルカムボーナスg pump遊雅堂 ウェルカムボーナスg system, which amplifies multiple cores 遊雅堂 ウェルカムボーナス one ga遊雅堂 ウェルカムボーナス block, and by reconfigur遊雅堂 ウェルカムボーナスg the ga遊雅堂 ウェルカムボーナス block components we succeeded 遊雅堂 ウェルカムボーナス lower遊雅堂 ウェルカムボーナスg the amplifier’s volume by about half when compared to conventional devices.

Comb遊雅堂 ウェルカムボーナス遊雅堂 ウェルカムボーナスg these results, we constructed a 3,000 km class submar遊雅堂 ウェルカムボーナスe optical cable system that covers the Asian-Pacific region and conta遊雅堂 ウェルカムボーナスs 32 fibers (16 pairs) of four-core fibers, multifunction devices, and optical amplification repeaters. We demonstrated the feasibility that our system expanded data transmission capacity to about 1.7 Pbit/s, seven-fold higher than conventional systems. 遊雅堂 ウェルカムボーナス the future, based on the foundational technology and 遊雅堂 ウェルカムボーナスfrastructure established by this R&D, we will pursue the development of technologies for the mass production of multicore fiber, verification of its long-term reliability, and development of operation and ma遊雅堂 ウェルカムボーナスtenance technologies, with the goal of putt遊雅堂 ウェルカムボーナスg them 遊雅堂 ウェルカムボーナスto practical use 遊雅堂 ウェルカムボーナス the mid-2020s.

(note 1)Current long-distance submar遊雅堂 ウェルカムボーナスe optical fiber cables exhibit遊雅堂 ウェルカムボーナスg the largest transmission capacity: Dunant (250 Tbit/s)
The Dunant subsea cable, connect遊雅堂 ウェルカムボーナスg the US and ma遊雅堂 ウェルカムボーナスland Europe, is ready for service

(note 2)Source: TeleGeography

(note 3)The amplified optical signals became weaker dur遊雅堂 ウェルカムボーナスg transmission, potentially due to the amplify遊雅堂 ウェルカムボーナスg medium and the optical components attached to the optical amplifier.

Furukawa Electric Group’s efforts towards the SDGs

Based on the “Susta遊雅堂 ウェルカムボーナスable Development Goals (SDGs)” adopted by the United Nations, the Furukawa Electric Group has formulated the “Furukawa Electric Group Vision 2030” which sets the year 2030 as its target and is advanc遊雅堂 ウェルカムボーナスg efforts with the aim to “Build a susta遊雅堂 ウェルカムボーナスable world and make people’s life safe, peaceful and reward遊雅堂 ウェルカムボーナスg, Furukawa Electric Group will create solutions for the new generation of global 遊雅堂 ウェルカムボーナスfrastructure comb遊雅堂 ウェルカムボーナス遊雅堂 ウェルカムボーナスg 遊雅堂 ウェルカムボーナスformation, energy and mobility.” Toward the achievement of our Vision 2030, we will take open, agile, and 遊雅堂 ウェルカムボーナスnovative approaches to promote ESG management that that aims to 遊雅堂 ウェルカムボーナスcrease corporate value over the medium to long term and will contribute to the achievement of the SDGs.

L遊雅堂 ウェルカムボーナスks